II Semester M.Sc. Degree Examination, June/July 2014 (NS) (2010-11 & onwards) CHEMISTRY C-204 : Spectroscopy – I

Time : 3 Hours

Instruction : Answer question 1 and any five of the remaining.

- 1. Answer any ten of the following :
 - a) Prove that in BF_3 molecule $C_3\sigma_v \neq \sigma_vC_3$.
 - b) Using the general matrix representation for $C_n(z)$. Write the matrix representations for C_3 and C_4 operation.
 - c) What do the Mulliken symbols B_{1g} and A_{2u} signify ?
 - d) A molecule absorbs a photon of frequency 3×10^{10} Hz. Convert this frequency into wave number, wavelength and energy (J/mole) units.
 - e) Make a schematic plot of the rotational wave functions Y_J^M (J = 0, 1, 2) a rigid diatomic molecule and classify them according to their symmetrics.
 - f) The rotational constant for H³⁵Cl is observed to be 10.5909 cm⁻¹. What are values of B for H³⁷Cl and for ²D³⁵Cl ?
 - g) Given a dipole moment operator, F, which is symmetric (g), determine the transitions for which $\int \psi_1^* F \psi_2 d\tau$ remain nonzero.
 - h) Some of the vibration rotation bonds in the spectrum of a molecule, XYZ have no intensity at the band centre. In case of another molecules ABC all bands have absorptions at the band centre. Deduce their structures with reason.
 - i) Write the electronic structure of O_2 . Calculate the bond order of O_2 and O_2^+ .
 - j) How do you distinguish phosphorescence, fluorescence and Raman scattering from each other ?
 - k) Plot schematically the time domain signals from two spectral lines having the same frequency but different widths.
 - I) Define the term polarizability and depict the polarizability ellipsoid for $\rm H_2O$ molecule.

PG – 230

(10×2=20)

Max. Marks: 80

2. a) List the diagnostic symmetry elements and obtain the point group symmetry of the following molecules :

i) NH ₃	ii) H ₂ O	iii) PCl ₃
iv) C₂H₄	v) $C_{2}H_{2}$	vi) CHCl ₃

- b) A linear molecule AX_2 adopts two different structures of $C_{\infty v}$ and $D_{\infty b}$ symmetrics respectively. Sketch the normal modes and predict the number of IR active and Raman active normal modes in each structure. (6+6)
- 3. a) Applying the principles of symmetry, derive the Orthonormalization conditions of wave function.
 - b) Using pertubation theory, obtain the selection rules governing the vibrational transitions of an anharmonic oscillator. (6+6=12)
- 4. a) The absorption spectrum of O₂ shows vibrational structure with a continuum at 56,876 cm⁻¹; the upper electronic state dissociates into one ground state atom and one excited atom (excitation energy measured from atomic spectrum is 15,875 cm⁻¹). Estimate the dissociation energy in KJ mole. (N = 6.023×10^{23} , h = 6.626×10^{-34} Js : C = 3×10^8 ms⁻¹.)
 - b) State and explain the selection rules for the electronic transition.
 - c) Explain the importance of Frank-Condon principle for explaining the intensities
 of vibrational structures. (4+4+4=12)
- 5. a) Using classical mechanics obtain the centrifugal distortion constant for a diatomic rotor.
 - b) Write the selection rules and make schematic plots of the vibration-rotation spectra of the parallel and perpendicular vibrations of symmetric top molecules.

(6+6=12)

a) The NO₃⁻ ion belongs to D_{3h} symmetry. Obtain the number of IR allowed.
 (and their symmetries) and Raman allowed (their polarization) lines in its vibrational spectrum.

b) A_2H_2 has IR and Raman lines as in the following table.

Cm ^{−1}	IR	Raman
3374	_	S (Pol)
3287	PR(s)	-
1973	_	VS (Pol)
729	PQR(s)	_
612	_	W (depol)

Give the structure of A_2H_2 and assign the lines.

(6+6=12)

- 7. a) Illustrate on a Jablonski diagram the various photophysical pathways for the decay of excited states and comment an their characteristics features.
 - b) What is unharmonicity constant ? How does it affect the spectral lines in an IR spectrum ? (6+6=12)